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Introduction

» Sometimes, in order to a prove an arithmetical fact Vx¢(x) by
induction, straightforward induction “does not work” and
instead one “must” use a “stronger” induction hypothesis
¥(x) and prove Vx(x), from which ¥xy(x) may be derived.

» Suppose we want to prove that, for all natural numbers n, the
sum of the first n odd numbers is a perfect square.
» Straightforward induction yields the following:

1. Base case: the sum of the first 0 odd numbers is 0, which is a
perfect square.

2. Inductive step: if the sum of the first n odd numbers is a
perfect square k2, then the sum of the first n+ 1 odd numbers
is k2 +2n+ 1. But it is not true that k> +2n+ 1 is a perfect
square for all k and n. So we are stuck.



Introduction

> Instead, we need to prove the following stronger result by
induction: for all natural numbers n, the sum of the first n
odd numbers is n?.

» Straightforward induction yields the following:

1. Base case: the sum of the 0 first odd numbers is 0, which is 02.

2. Inductive step: if the sum of the first n odd numbers is n?,

then the sum of the first n + 1 odd numbers is
n”?+2n+1=(n+1)>2

» But how can it be “easier” to prove a stronger fact?

> Is the phenomenon real? Do we, in the above case for
instance, really “need” to strengthen the induction
hypothesis?



Formal characterization

> Here's how not to characterize the situation: there are
formulas ¢(x) and (x) such that
L PAt ©(0) A Vx(p(x) = ¢(x)).
2. PAE ¥(0) AVx(1(x) = ¢(x)).
3. PAF Vx(x) — Vxp(x).
» This situation is impossible. 2 implies PA - ¥x1(x), which by
3 yields PA | Vxp(x), which by pure logic yields
PA = ©(0) AVx(p(x) = ¢(x')), which contradicts 1.



Formal characterization

> Instead, the situation may perhaps be characterized as follows:
starting from the axioms of Peano arithmetic minus the
induction axioms, we successively prove more and more
theorems using logic and the rule of induction:

0(0)  x(p(x) = o(x))
Vxp(x)

» Suppose that, at some stage in this process of mathematical
inquiry, we have reached a theory T consisting of the axioms
and hitherto proved theorems.

» Then, as we will show, the following situation may indeed
arise:

L T %7 ¢(0) AVx(p(x) = (X))
2. TF((0) AVx(p(x) = p(x)).
3. T EVxy(x) — Vxo(x).




A minimal example

Consider the following non-standard model of Robinson arithmetic.
Let A={...,a_p,a_1, a0, a1, az, ...} be a countably infinite set
disjoint from the natural numbers, and let the domain of the model
be NU A. Let the constant 0 be interpreted as the number 0, and
extend the interpretation of the function symbols ’, +, - as follows:

1. a, =a,41 for z € Z.

a;+n=n+a, =azp,forzeZand neN.
a;+a,=ay+a; =azy, forz,ucZ.
a,-0=0-a,=0for z € Z.
a,-n=n-a,=az,forzeZandneN-—{0}.

ok wnN

ay-ay=ay-ay = a, forz,u € 7.



A minimal example

In order to very that 1-3 above are possible, i.e. that there are T,
@ and % such that

L T 7 ¢(0) AVx(p(x) = ¢(X)).
2. T E4(0) AVx(1(x) — (xX)).
3. T F¥xy(x) = Vxp(x).
it will suffice to find true formulas ¢(x) and 1(x) (true in the sense

of being satisfied by all natural numbers in the standard model as
well as the non-standard model) with the following profile:

‘ d_o2 4d—-1 4o 41 a2
o(x){... 0 0 1 0 O
Y(x)|.. 0 0 0 0 O




A minimal example

» If such formulas can be found, let T be the theory you get by
adding ¥(0) A Vx(10(x) — ¥(x")) and Vxip(x) — Vxp(x) to
Robinson arithmetic. Since these sentences are true in our
non-standard model, this is a model of T, verifying 1-3 above.

» For instance, let

o(x) =VyVz(x #Xx - XAy +x=z+x =y =2)
Y(x) =VyVz(y +x=z+x >y =2z)

» Then we actually have the following situation (with Q being
Robinson arithmetic):

1. QF ¢(0).

2. QIZYx(p(x) = ¢(x')).

3. QE9(0) AVX(1(x) = P(xX)).
4. FIx((x) = »(x)).



Proof by independent or weaker induction hypothesis

Is either of the following possible?

» Proof by independent induction hypothesis:
L T ¥ @(0) Ax(p(x) = o(x).
2. T EY(0) AVx((x) = (X)),
3. T EVxih(x) ¢ Vxo(x).
4. T Vx((x) = ¢(x)).
5. T x(e(x) = ¥(x)).

» Proof by weaker induction hypothesis:
1. T e(0) AVx(p(x) = o(x)).

T E(0) AVX(4(x) — (X))

T F Vxi(x) <> Vxp(x).

T 9x(¥(x) = ¢(x)).

T FVx(p(x) = ¥(x)).
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Proof by independent induction hypothesis

It suffices to find true formulas ¢(x) and 1(x) with the following

profile:
‘ d_o2 4d-1 4dp 41 a2
e(x) ... 1 1 1 0 O
Yx)[.. 0 0 1 1 1

For instance, with x < y :=3z(x +z=y) A x # y, let

p(x) = Vy(y < x = x> #y?)
(x) =Vy(x <y = x> #y?)

Observe that - Vxp(x) <> Vxi)(x), by simple relabeling of
variables. Thus, let T = Q + ¥(0) A Vx(th(x) — 1(x')).



Proof by weakened induction hypothesis

It suffices to find true formulas ¢(x) and 1(x) with the following
profile:

For instance, let

p(x) :=Vy(x #y = x* # y?)
P(x) =Vy(x <y = x* # y°)



The original example

> Let the function f : N — N be defined recursively as follows:

£(0) =0
f(n+1)=f(n)+2n+1

» Let minimal arithmetic (MA) be the theory you get by adding
commutativity, associativity and distribution laws for addition
and multiplications to the axioms of Robinson arithmetic.

» Suppose that, using minimal arithmetic and the rule of
induction, we want to show that, for any natural number n,
there’s a natural number k such that f(n) = k2.



The original example

> In order to do that, the normal thing to do is to extend our
language with a new 1-place function symbol f, the intended
interpretation of which is f, and add the following two axioms
to our theory of minimal arithmetic:

(A1) £(0) = 0.
(A2) Vx(£(x') = £(x) + (0" - x)).
> Let

p(x) = Jy(E(x) =y y)
P(x) =£f(x) =x-x



The original example

> It's easy to show that the non-standard model of Robinson
arithmetic introduced earlier also is a model of minimal
arithmetic.

» Extend this model with an interpretation g: NUA - NUA
of £, defined as follows:

1. g(0)=0.

2. g(n+1)=g(n)+2-n+1forneN.
3. g(ao):al.

4. g(apnt1) =g(an)+2-a,+1forneN.

5. g(ap-1) =g(an) +2-a,+1for ne Z — (N—{0}).
» The result M is a model of MA + Al + A2.



The original example
» Moreover, we have
M BEIX(Fy(E(x) =y - y) = Iy (E(X) = y - y))
as witnessed by ag assigned to x, and
M EVx(f(x) =x" - X' = £(X) =x" - X")

since g(an) > a(p41)2 for all n € Z.
» With T = MA + Al + A2, we thus have

TYIx@y(f(x) =y -y) = W(EK) =y -y))
and
TH£0)=0-0AVx(£f(x) =x-x — £(x') =x"-x)

as desired.



Thank you!



