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1 Introduction

Sometimes, in order to a prove an arithmetical fact Vaxy(x) by induction,
straightforward induction “does not work” and instead one “must” use a
“stronger” induction hypothesis ¢ (z) and prove Yz (x), from which Vzp(z)
may be derived.

To give an example, suppose we want to prove that, for all natural num-
bers n, the sum of the first n odd numbers is a perfect square. Straightforward
induction yields the following:

1. Base case: the sum of the first 0 odd numbers is 0, which is a perfect
square.

2. Inductive step: if the sum of the first n odd numbers is a perfect square
k2, then the sum of the first n + 1 odd numbers is k? + 2n + 1. But it
is not true that k? + 2n + 1 is a perfect square for all k and n. So we
are stuck.

Instead, we need to prove the following stronger result by induction: for all
natural numbers n, the sum of the first n odd numbers is n%. Straightforward
induction yields the following:

1. Base case: the sum of the 0 first odd numbers is 0, which is 0.

2. Inductive step: if the sum of the first n odd numbers is n2, then the
sum of the first n + 1 odd numbers is n? +2n + 1 = (n + 1)2.
2 Formal characterization

Here’s how not to characterize the situation: there are formulas ¢(x) and

¥ (x) such that



1. PAY ¢(0) AVz(p(z) = o(2')).
2. PAE ¢(0) AVx(¢(z) = (2))).
3. PAFVYay(z) = Yap(x).

This situation is impossible. 2 implies PA + Vziy(x), which by 3 yields
PA = VYxp(z), which by pure logic yields PA F ¢(0) A Va(p(x) — ¢(2)),
which contradicts 1.

Instead, the situation may perhaps be characterized as follows: starting
from the axioms of Peano arithmetic minus the induction axioms, we succes-
sively prove more and more theorems using logic and the rule of induction:

©(0)  Va(p(z) — ¢(')
Vap(z)

Suppose that, at some stage in this process of mathematical inquiry, we have
reached a theory T consisting of the axioms and hitherto proved theorems.
Then, as we will show, the following situation may indeed arise:

LT (0) AVz(p(z) = p(a)).
2. T F (0) AVa(db(z) = b(a')).
3. T+ Vo (z) — Vaop(z).
This is equivalent to the following:
LT, (0) ANVa(p(x) = ¢(a') = Vap(z) I Vop(z).
2. T F (0) AVa(db(x) = b(a')).
3. T+ Vo (z) — Vaop(z).

3 A non-standard model

Consider the following non-standard model M of Robinson arithmetic. Let
A={..,a_9,a_1,a9,a1,as,...} be a countably infinite set disjoint from the
natural numbers, and let the domain of the model be NUA. Let the constant 0
be interpreted as the number 0, and extend the interpretation of the function
symbols ’, 4, - as follows:

1. d, = a,4, for z € Z.

2. a,+n=n+a, =a,, for z€ Z and n € N.
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3. a,+ay, =ay,+a, =a,., for z,u € Z.

4. a,-0=0-a, =0 for z € Z.

5. a,-n=mn-a,=a,,for z€Z and n € N—{0}.
6. .- Ay = Ay -0, = Q. for z,u € Z.

It can easily be verified that this is also a model of what we may call minimal
arithmetic, which is the theory you get by adding commutativity, associativ-
ity and distribution laws for addition and multiplications to the axioms of
Robinson arithmetic.

In order to very that 1-3 above are possible, it will suffice to find true
formulas ¢(x) and ¢ (z) (true in the sense of being satisfied by all natural
numbers in the standard model as well as the non-standard model) with the
following profile:

‘ a_o2 a1 Gy a1 Q2
e)l.. 0 0 1 0 0
Y@)|.. 0 0 0 0 0

Then let T be the theory you get by adding ¥ (0) A Vz(¢(x) — ¥(z’)) and
Va(z) — Vae(x) to Robinson arithmetic. Since these sentences are true
in our non-standard model, this is a model of T', verifying 1-3 above. For
instance, let

olx) =VYyVz(zr #z-zANy+r=z+z —>y=2)
Y(z) =VyVz(y+r=24+2 =y =2)

Then we actually have the following situation (with ¢) being Robinson arith-
metic):

1. QF ¢(0).

- QY V(p(z) = ¢(2)).

- QFY(0) AVa(¥(z) = (')
E V(Y (x) = ¢(x)).

In this case, ¢(x) is stronger than p(z) in the strongest possible sense.
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4 Proof by different induction hypothesis?
As a matter of fact, the following situations are both possible:

L. Tt ¢(0) AVx(p(x) = p(z’).

2. TEY(0) AVa(y(z) — ().

3. T+ Vaup(x) & Vap(z).

4. T Vz((r) = ¢(x)).

5. Tt Va(p(z) = ¥(x)).

1. Tt o(0) AVa(p(z) — ().
2. T 9(0) AVa(¥(z) — ().
3. TFVay(z) & Yop().

4. T W Va((z) = o(z)).

5. T F Va(p(z) = ¥(2)).

In the former case, it suffices to find true formulas ¢(z) and ¢ (x) with the
following profile:

‘ a_o2 a1 Gy a1 Q2
ex)|... 1.1 1 0 0
P)[.. 0 0 1 1 1

For instance, let

o(x) :=Vy(z >y — 2> # )
(x) =Vylz <y — 2* #y°)

Observe that F Vaxp(x) <> Yo (z), by simple relabeling of variables. Thus,
let T'= MA+¢(0) AVz(p(z) — ().

In the latter case, it suffices to find true formulas ¢(z) and ¢ (x) with the
following profile:

‘ a_o9 a_1 Gap ap amg
ex)|... 0 0 1 0 0
Ye).. 0 0 1 1 1




For instance, let

p(x) :=Vy(z #y — 2> # )

P(x) = Vy(er <y —2* #y°)
Observe that we have

= Va(p(z) = ¢(x))
and
VaVy(z <yVae=yVy <z)kFVee(x) < Vey(x)
and also
MEYVaVy(r <yVr=yVy<zx)

Thus, let T'= MA+VaVy(z < yVao =yVy < z)+9(0) AVa((z) = ¥(a)).
We then have a case were one must use a different induction hypotheses, and
can use one that is weaker.

5 The original example

Going back to our original example, let the function f : N — N be defined
recursively as follows:

f0)=0
fn+1)=f(n)+2n+1
What we want to show is that, for any natural number n, there’s a natural
number k such that f(n) = k. In order to that, we extend the language Lp,

with a new 1-place function symbol f, the intended interpretation of which
is f, and add the following two axioms to our theory of minimal arithmetic:

(A1) £(0) = 0.
(A2) Va(f(z') = £(x) + (0" - z)").
Let ¢(x) be Jy(f(z) = y-y) and let ¥(z) be f(x) = xz-z. Clearly, - VY (z) —

Vre(x). To see that this may indeed a case where, in order to prove Vazp(z)
by induction, one needs to use the stronger induction hypothesis 1(z), extend
the non-standard model M of minimal arithmetic introduced earlier with an
interpretation g : NU A — NU A of £, defined as follows:

1. g(0) =0.

2. gln+1)=g(n)+2-n+1forneN.
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3. g(ag) = ay.

4. g(ans1) = g(ap) +2-a, + 1 forn € N.

5. g(an—1) =glan) +2-a, + 1 forn € Z— (N —{0}).
The result M’ is a model of M A + Al + A2. Moreover, we have

M EV(Jy(E(r) =y - y) = y(E(@@) =y y))
as witnessed by aq assigned to x, and
M EVz(f(z) =2 -2’ — £(a') = 2" - 2")
since g(an) > a(n41)2 for all n € Z. With T'= MA + Al + A2, we have
Ty Va(@y(E(x) =y-y) = (@) =y -y))

and
TH£0)=0-0AVz(f(zx) =2 -2 — £(2') =2a"-2)

as desired.



