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1 Introduction

(1) Among two mutually exclusive hypotheses that explain the evidence equally

well, one should have a higher degree of belief in the simpler one.

(2) Among two equally strong hypotheses that explain the evidence equally well,

one should have a higher degree of belief in the simpler one.

(3) Among two comparable hypotheses that explain the evidence equally well, one

should have a higher degree of belief in the simpler one.

(4) For any two comparable hypotheses H and H ′ and evidence E such that

P (E|H) = P (E|H ′), we have P (H|E) < P (H ′|E) iff K(H ′) < K(H).

With E = H ∨H ′, this entails that

(5) For any two comparable hypotheses H and H ′, we have P (H) < P (H ′) iff

K(H ′) < K(H).
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2 Definitions and results

Definition 2.1 (Complexity). If L is a first order language, let ΩL be the class of all

L-models. We say that an L-sentence defines a class of of L-models iff the sentence

is true precisely in all members of that class, and that ∆L ⊆ P(ΩL) is the class of

all classes of L-models defined by some L-sentence. Observe that ∆L is a countably

infinite Boolean algebra with top element ΩL and bottom element ∅. We will take ∆L

to be our space of hypotheses. The complexity K : ∆L → N of each hypothesis is

then defined as the length of the shortest L-sentence defining that class.

Definition 2.2 (Respecting Ockham’s razor). Relative to a language L and a com-

parability relation Γ ⊆ ∆L × ∆L, a probability function P : ∆L → [0, 1] respects

Ockham’s razor iff, for any 〈A,B〉 ∈ Γ, P (A) < P (B) iff K(B) < K(A).

Lemma 2.1. Let L be a first order language and let Σ ⊆ ∆L be generated by a

fragment of L with only a finite non-logical vocabulary. If Σ is infinite, then, for

any n ∈ N, there’s A ∈ Σ such that n < K(A). In other words, if Σ is infinite,

there’s A ∈ Σ of arbitrarily high complexity.
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Theorem 2.1. Relative to a language with at least one binary predicate and

a comparability relation that contain all pairs of mutually exclusive hypotheses,

there’s no probability function respecting Ockham’s razor.

Proof. Let Γ be such that 〈A,B〉 ∈ Γ if A∩B = ∅. Let R be a binary predicate of L,

and let A ∈ ∆L be the class of models satisfying the sentence ∀xRxx. Assume, towards

contradiction, that P is a probability function respecting Ockham’s razor relative to L

and Γ. Clearly, K(A) = 5 and K(Ā) = 6. Hence, P (Ā) < P (A). For each, n ∈ N, let

ϕn be the sentence ∀xRxx∧∃x1...∃xn+1

∧
1≤i<j≤n+1¬Rxixj, and let An ∈ ∆L be the

class of models satisfying it. Clearly, for any i, j ∈ N such that i < j, there’s a model

satisfying ϕi but not ϕj. Hence, A0, A1, A2, ... forms an infinite sequence of distinct

members of A. By Lemma 2.1, it follows that there are subsets of A of arbitrarily

high complexity. In particular, there’s B ⊆ A such that 100 < K(B). And since

K(B) ≤ K(A− B) + K(A) + 3, we have 92 < K(A− B). Now, let C be the class

of models satisfying ∀x¬Rxx. Since K(C) ≤ 6 and K(Ā−C) ≤ K(Ā) +K(C) + 3,

we have K(Ā − C) ≤ 15. Hence K(C) < K(B) and K(Ā − C) < K(A − B).

Since B ∩ C = ∅ and (A − B) ∩ (Ā − C) = ∅, we have P (B) < P (C) and

P (A−B) < P (Ā− C). But this contradicts the fact that P (Ā) < P (A).
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Definition 2.3 (Closure). A comparability relation Γ ⊆ ∆L × ∆L is closed iff

〈A,B〉 ∈ Γ for any A,B ∈ ∆L such that

1. there are probability functions P, P ′ and P ′′ such that P (A) < P (B),

P ′(A) = P ′(B) and P ′′(A) > P ′′(B), and

2. either of the following obtains:

(a) For every probability function P respecting Ockham’s razor with respect to

Γ, P (A) < P (B).

(b) For every probability function P respecting Ockham’s razor with respect to

Γ, P (A) = P (B).

(c) For every probability function P respecting Ockham’s razor with respect to

Γ, P (A) > P (B).
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Lemma 2.2. Assume that L contains the language of arithmetic, and let A ∈ ∆L

be a class of models containing a model of Robinson arithmetic. Then there’s

B ∈ ∆L of arbitrarily high complexity such that B ⊆ A.

Theorem 2.2. Relative to a language containing arithmetic and a closed compa-

rability relation containing at least one pair of hypotheses of different complexity

such that neither entails the other and both are consistent with but not entailed by

Robinson arithmetic, there’s no probability function respecting Ockham’s razor.

Proof. Assume that Γ is closed and let 〈A,B〉 ∈ Γ be a pair of hypotheses such that

K(A) 6= K(B), neither entails the other and both are consistent with, but not entailed

by, Robinson arithmetic. By symmetry of Γ, we can assume without loss of generality

that K(A) < K(B). Let C be the class of models satisfying the axioms of Robinson

arithmetic, and let D = Ā ∩ C. By assumption, D 6= ∅. Now, either D ∩ B 6= ∅
or D ∩ B̄ 6= ∅. Let E be either of those two which is non-empty. By Lemma 2.2,

there’s E ′ ⊆ E of arbitrarily high complexity. Since K(E ′) ≤ K(A∪E ′) +K(A) + 4,

that means there’s A′ = A ∪ E ′ of arbitrarily high complexity. In particular, there’s

A′ = A ∪ E ′ such that B 6⊆ A′, A′ 6⊆ B and K(B) < K(A′). It follows that there

are probability functions P, P ′ and P ′′ such that P (A) < P (B), P ′(B) < P ′(A) and

P ′′(A) = P ′′(B). Assume, towards contradiction, that P is a probability function
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respecting Ockham’s razor with respect to Γ. Then P (B) < P (A). Hence, for any

P ′ respecting Ockham’s razor with respect to Γ, we have P ′(B) < P ′(A′). Since Γ is

closed, we get 〈A′, B〉 ∈ Γ. But since K(B) < K(A′), that means P (A′) < P (B),

yielding a contradiction.
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3 Conclusion

Our main result is that the following five assumptions are inconsistent with the laws

of probability:

1. A scientific language is first order and contains arithmetic.

2. Any serious empirical hypothesis formulated in such a language is consistent

with, but not entailed by, some sufficiently strong theory of first order arithmetic

(e.g. Peano arithmetic).

3. The best measure of simplicity of an hypothesis is the length of the shortest

formulation of it in some scientific language.

4. Ockham’s razor applies to at least two serious empirical hypotheses, neither of

which entails the other, and one of which is simpler than the other.

5. Ockham’s razor doesn’t determine the relation between the subjective probabili-

ties of two hypotheses without taking the simplicity of those two hypotheses into

account
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