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Definition 1 (Basic functions). The basic functions are the zero function Z, the successor
function s, and the identity functions idni for any 1 ≤ i ≤ n, defined by

Z(x) = 0

s(x) = x+ 1

idni (x1, ..., xn) = xi

Definition 2 (Composition). Let f be an n-place function and g1, ..., gn be m-place
functions. Define the m-place function h by

h(x̄) = f(g1(x̄), ..., gn(x̄))

Then we say that h is obtained from f and g1, ..., gn by composition.

Definition 3 (Primitive recursion). Let f and g be n-place and (n+ 1)-place functions,
respectively. Define the (n+ 1)-place function h by

h(x̄, 0) = f(x̄)

h(x̄, y + 1) = g(x̄, y, h(x̄, y))

Then we say that h is obtained from f och g by primitive recursion.

Definition 4 (Tail recursion). Let f and g1, ..., gn be n-place functions. Define the
(n+ 1)-place function h by

h(x̄, 0) = f(x̄)

h(x̄, y + 1) = h(g1(x̄), ..., gn(x̄), y)

Then we say that h is obtained from f och g by tail recursion.

Remark 1. We could allow g1, . . . , gn to be (n+ 1)-place functions taking y as an addi-
tional argument. Theorem 1 below shows that it makes no difference.

Definition 5 (Primitive recursive functions). The primitive recursive functions are the
smallest set of functions containing the basic functions that is closed under composition
and primitive recursion.
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Definition 6 (Tail recursive functions). The tail recursive functions are the smallest
set of functions containing the basic functions that is closed under composition and tail
recursion.

Theorem 1. Every primitive recursive function is tail recursive.

Proof. By induction on function descriptions. By definition, the basic functions are tail
recursive, and composition preserves tail recursivity. Assume, as induction hypothesis,
that f and g are tail recursive, and let h be obtained from f and g by primitive recursion:

h(x̄, 0) = f(x̄)

h(x̄, y + 1) = g(x̄, y, h(x̄, y))

Define the tail recursive function h′ by

h′(x̄, z, v, 0) = z

h′(x̄, z, v, y + 1) = h′(x̄, g(x̄, v, z), s(v), y)

where s is the successor function (a basic function). We will show that

h′(x̄, f(x̄), 0, y) = h(x̄, y)

To so do, we first show that, for any k and x̄, y, z, v,

h′(x̄, h(x̄, v), v, y + k) = h′(x̄, h(x̄, v + k), v + k, y)

by induction on k. The base case k = 0 is obvious. Assume, as induction hypothesis,
that the claim holds for k (with respect to any x̄, y, z, v). Then we get

h′(x̄, h(x̄, v), v, y + (k + 1)) = h′(x̄, g(x̄, v, h(x̄, v)), v + 1, y + (k + 1))

= h′(x̄, h(x̄, v + 1), v + 1, y + k)

[by induction hypothesis] = h′(x̄, h(x̄, (v + 1) + k), (v + 1) + k, y)

= h′(x̄, h(x̄, v + (k + 1)), v + (k + 1), y)

as desired. Hence, in particular,

h′(x̄, h(x̄, 0), 0, 0 + k) = h′(x̄, h(x̄, 0 + k), 0 + k, 0)

Thus, for any x̄, y, we have

h′(x̄, f(x̄), 0, y) = h′(x̄, h(x̄, y), y, 0) = h(x̄, y)

Theorem 2. Every tail recursive function is primitive recursive.

Proof. By induction on the complexity of function description. By definition, the basic
functions are primitive recursive, and composition preserves primitive recursivity. As-
sume, as induction hypothesis, that f and g1, ..., gn are primitive recursive, and let h be
obtained from f and g1, ..., gn by tail recursion:

h(x̄, 0) = f(x̄)

h(x̄, y + 1) = h(g1(x̄), ..., gn(x̄), y)
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For each i ≥ 1, let π(i) be the i : th prime number. We use the fact that the n-place
sequence coding function

〈x1, ..., xn〉 = π(1)x1+1 · ... · π(n)xn+1

and the corresponding 2-place decoding function

[〈x1, ..., xn〉]i = xi

are primitive recursive. Define the primitive recursive function g by

g(x̄, 0) = 〈x̄〉
g(x̄, y + 1) = 〈g1([g(x̄, y)]1, ..., [g(x̄, y)]n), ..., gn([g(x̄, y)]1, ..., [g(x̄, y)]n)〉

and the primitive recursive function h′ by

h′(x̄, y) = f([g(x̄, y)]1, ..., [g(x̄, y)]n)

We will show that
h′(x̄, y) = h(x̄, y)

To do so, we first show that for any k and x̄, y, z,

h([g(x̄, z)]1, ..., [g(x̄, z)]n, y + k) = h([g(x̄, z + k)]1, ..., [g(x̄, z + k)]n, y)

by induction on k. The base case k = 0 is obvious. Assume, as induction hypothesis,
that the claim holds for k (with respect to any x̄, y, z). We then get

h([g(x̄, z)]1, ..., [g(x̄, z)]n, y + (k + 1))

= h(g1([g(x̄, z)]1, ..., [g(x̄, z)]n), ..., gn([g(x̄, z)]1, ..., [g(x̄, z)]n), y + k)

[by def. of g] = h([g(x̄, z + 1)]1, ..., [g(x̄, z + 1)]n, y + k)

[by ind. hyp.] = h([g(x̄, (z + 1) + k)]1, ..., [g(x̄, (z + 1) + k)]n, y)

= h([g(x̄, z + (k + 1))]1, ..., [g(x̄, z + (k + 1))]n, y)

as desired. We conclude that, in particular,

h(x̄, 0 + k) = h([g(x̄, 0)]1, ..., [g(x̄, 0)]n, 0 + k)

= h([g(x̄, 0 + k)]1, ..., [g(x̄, 0 + k)]n, 0)

= f([g(x̄, 0 + k)]1, ..., [g(x̄, 0 + k)]n)

= h′(x̄, 0 + k)

and so
h(x̄, y) = h′(x̄, y)
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